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Abstract—The transformer architecture is the backbone of
Large Language Models. These models are notorious for the
computational intensity required to run them and therefore
also their significant energy usage. As LLM-based AI products
become more prominent, the inference of this architecture will
need to become more efficient.

In this work, we study two inference optimizations that can
reduce the energy and computation required during inference.
First, we analyze a performance optimization called KV Caching,
which reduces the amount of repeated computation during
inference by storing the keys and values from previous inference
passes. Second, we analyze a model design choice underlying
the differences between Multi-Head Attention, Grouped-Query
Attention, and Multi-Query Attention, namely changing the
number of groups of keys and values that are used in attention.

We show that energy usage, cycles, and compute scale linearly
with the number of query groups selected across a variety of
different head counts. Noticeably, when measuring the compute
with a model with 16 heads, we notice a more than 15% drop
in computes when going from Multi-Head Attention to Multi-
Query Attention. We also show that increasing the size of the
KV cache leads to noticeable improvements in the compute and
energy usage of the model due to the reduction of redundant
computation.

I. INTRODUCTION

Investment and usage of AI products has seen a huge
increase in recent years due to the development of the ma-
chine learning architecture called the Transformer [15]. This
architecture is the backbone of Large Language Models like
GPT-4, whose surge in popularity has not abated. Much of
the success of these models can be attributed to scaling:
making the models larger and training them on more and more
data have been the two most important things influencing the
increasing performance of these models [13]. Because of this,
these models are very expensive to serve for inference. Some
estimates state that OpenAI incurs expenses of over $700,000
per day to serve ChatGPT [6]. To combat this, some models
have sacrificed using the optimal tradeoff between model size
and training data size [8] by training smaller models, like
LLaMA [14], on huge datasets, to reduce the computational
intensity of inference. However, these models are still billions
if not tens of billions of parameters, meaning they are still
difficult to serve, especially on consumer hardware.

Serving these models efficiently during inference is crucial,
especially since their current adaption is straining existing
technological infrastructure. Improving the efficiency of in-
ference can help to alleviate this strain and reduce the energy
consumption of these power-hungry models. Improving their
efficiency can also help to democratize transformers by en-
abling consumer hardware to power them. In this work, we
investigate the impact of several interventions on the efficiency
of inference.

The first method we investigate is the effect of using KV
caching during inference to reduce the amount of redundant
computation performed. The second method we investigate is
the effect of using different query group sizes on computation
and energy, since using fewer query groups results in smaller
matrix multiplies and instead enables reuse of keys and values
across attention heads.

II. BACKGROUND

In this section, we provide a technical background to the
topics we investigate.

A. Attention

In transformers, their attention module is the differentiating
factor that makes them so powerful [15]. It takes as input a
vector for every token in the sequence, each of which is the
length of the models hidden dimension. First, this collection of
vectors is projected three different times to get a collection of
queries, keys, and values. Then, attention takes the dot product
of every query with every key and scales these values. By then
softmaxing these values with respect to the query dimension,
we get an attention map describing how much each token
proportionally ’attends’ to every other token. We then do the
dot product with the values and this output attention map to
get the final result. We do this process separately for each head
in the model.

Attention for one head is described by the equation below,
where X is the input of size sequence length by hidden
dimension.

attention(X) = softmax(
(XWQ)(W

T
KXT )√

dhidden
)(XWV )

As seen in the above equation, the main cost of attention
comes from the 6 matrix multiplications that must be per-
formed. In the subsequent sections of this paper, we address
a number of interventions to reduce the costs of these matrix
multiplications.

B. KV Caching

KV caching [11] is an inference optimization that exploits
the fact that transformers reuse the same results when doing
multiple passes through the model during auto-regressive text
generation. This reuse is due to the fact that previous tokens
reuse their key and value representations and have the same
unnormalized attention score across inference passes. Since
we must do an inference pass for every single new token we
generate, a naive implementation frequently recomputes many
queries, keys and values. To reiterate, when auto-regressively
generating text, only the newly generated token has queries,
keys, and values that have not been previously generated. This
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fact can be exploited by caching the key and value represen-
tations and storing the unnormalized attention scores rather
than recomputing them for each forward pass. Ideally, when
trying to predict each next token during auto-regressive text
generation, we would store all previously computed vectors.
However, storing all these vectors may be unfeasible due to
memory constraints.

It is still possible to partially exploit this reuse without using
as much memory by instead storing just the last n keys and
values of the sequence. For sequences of less then length n,
this acts as full KV caching. For sequences longer than n, we
partially recompute keys and values and reuse the vectors that
were stored.

C. Grouped-Query Attention

The original paper that introduced the transformer intro-
duced Multi-Head Attention (MHA) [15], meaning that every
attention head operated on a distinct set of queries, keys,
and values. However, recent models like LLaMA-2 [14] have
instead adapted Grouped-Query Attention (GQA) [1], which
shares sets of keys and values across several sets of queries.
Some models, like Falcon [2], push this even further and use
Multi-Query Attention (MQA) [12], which only use one set
of keys and values and share them across all sets of queries.
This spectrum of versions of attention can be thought of as
changing one specific variable: the number of unique sets of
keys and values generated.

Generating fewer unique sets of keys and values across a
constant number of attention heads has clear benefits due to the
reduced size of matrix multiplies performed and the ability to
instead reuse the keys and values across attention heads. More
importantly, previous work has shown that reducing the num-
ber of keys and values did not noticeably effect performance
and was therefore effective at reducing the parameter count
without hurting model performance [1].

D. GPT-J

GPT-J is a six billion parameter decoder-only language
model that was trained by EleutherAI in 2021. Inspired by
GPT-3, GPT-J was trained on the Pile for general language
learning capabilities [16]. We utilize GPT-J because it is a stan-
dard across interpretability studies, with a standard transformer
backbone, which we subsequently augment with multi-query
and grouped-query attention. Specifically, we utilize GPT-J
with 16 layers rather than the full 28 due to the memory
limitations of our machines.

E. Eyeriss

Eyeriss [4] is a state-of-the-art spatial neural network ac-
celerator is optimized for energy efficency by utilizing a row-
stationary dataflow. For our experiments, we model GPT-J
running on an Eyeriss-like accelerator that is supported in
Accelergy and Timeloop.

F. Accelergy/Timeloop

For our energy and cycle evaluations, we utilize Accelergy
and Timeloop, state of the art methods for optimizing loop
mappings and approximating the number of cycles/energy
needed. Specifically, we utilize Timeloop to search the space
of optimal loop mappings, and we use Accelergy to evaluate
these mappings on the target hardware and generate energy
usage estimations [10], [17].

III. PRIOR WORK

The existing work on KV-Caches has focused on profiling
both mean FLOP utilization (MFU) and the latency per token,
where MFU serves as a proxy metric for both throughput
and arithmetic intensity [11]. We note that this focus largely
comes because companies serving large models are focused
on improving their serving capacity, leading them to focus on
throughput and latency.

We propose to take this approach and instead address it
from the context of Eyeriss, which is more focused on energy-
constraints. Specifically, we plan to explore how different KV-
cache sizes interact with general spatial accelerator workflows,
which are only profiled at a surface level in the current work.

Beyond the basic KV-cache evaluation that we plan, ex-
isting work has targeted studying the matrix multiplication
operations in Transformers using Timeloop, comparing MQA
and the basic multi-head attention [9]. However, these works
use the Berkeley Gemmini architecture [7] for generalizable
systolic array architectures, which are similar in practice to
Tensor Processing Units (TPUs).

We instead propose profiling these architectures and
dataflows on general spatial accelerators like Eyeriss, which
prioritizes energy efficiency and thus aligns with the goals of
our study. We also propose profiling a more recent implemen-
tation of attention for inference, Grouped Query Attention,
which aims to further improve memory footprint by further
grouping queries from MQA [1].

IV. ANALYZING KV CACHE

In this experiment, we aim to investigate the effect of the
number of keys and values stored in the KV cache on the
energy consumption and number of cycles and computes per-
formed during inference through the GPT-J [16] transformer
model. We use Accelergy [17] and Timeloop to measure the
models performance and use the Eyeriss [4] architecture as
our architecture accelerator.

For our experiment, we assume a sequence length of 512
tokens and sweep KV cache size in {0, 1, 4, 16, 64, 256, 512}.
We report Energy usage, cycles, and computes in Figure 1.
We observe that the computations performed drops linearly as
the number of keys and values cached increases. Cycles and
Energy both also drop consistently as higher numbers of keys
and values are cached for inference.

In Table I, We look closer at the percent drop of our statistics
in relation to doing no caching. We observe that when we
put all 512 tokens in the cache, which can be thought of as
putting all tokens in our sequence length in the cache, we

2



Fig. 1. The effect of storing more keys and values in the KV cache on the number of cycles, amount of energy used, and number of computes. This experiment
assumes a sequence length of 512 and uses the GPT-J architecture. We notice that

# of tokens in cache Energy Cycles Computes
0 0% 0% 0%
1 -9.29% -1.77% 0.04%
4 3.02% 1.00% 0.14%

16 1.59% 1.53% 0.57%
64 5.48% 3.29% 2.30%
256 7.68% 9.80% 9.18%
512 16.36% 18.68% 18.33%

TABLE I
PERCENT REDUCTION IN COMPARISON TO NOT USING KV CACHE.

EXPERIMENT USES A SEQUENCE LENGTH OF 512.

have a 16.36% reduction in energy usage, 18.33% reduction
in computes, and 18.68% reduction in cycles performed.
This shows that notable improvements to the efficiency of
transformer inference can be achieved by using a KV cache
when possible.

We note that the increase in computation from small cache
sizes like 1 likely results from odd numbers and non-powers
of two being introduced into the computation, resulting in
increased cycles and energy usage. We note that the larger
KV cache sizes still produce a linear relationship, making the
small values outliers.

V. ANALYZING QUERY GROUP SIZE

In this experiment, we aim to investigate the effect of
changing the number of query groups used on the energy
consumption and number of cycles and computes required
to perform inference for the GPT-J [16] transformer model.
To do this, we model the GPT-J architecture in Accelergy
[17] and Timeloop and use the Eyeriss [4] architecture as our
accelerator, which is supported by the Accelergy and Timeloop
libraries.

We use two variables to modify the attention mechanism:
while keeping the hidden dimension fixed, we modify both the
number of heads used in the attention mechanism as well as
the number of query groups used. We sweep number of heads
in {16, 64, 256} and number of query groups in {1, 2, 4, 8, 16}
and for each combination of these two variables simulate their
performance statistics. We report Energy Usage, Cycles, and
Computes in Figure 2. We observe that energy and computes
scale linearly with the number of query groups, meaning that

reducing the number of query groups results in less energy
usage and fewer computations performed.

Query Groups Energy Cycles Computes
1 13.95% 13.85% 15.31%
2 12.54% 13.587% 14.29%
4 11.05% 7.913% 12.245%
8 8.89% 0% 8.16%
16 0% 0% 0%

TABLE II
PERCENT REDUCTION IN COMPARISON TO MULTI-HEAD ATTENTION

(USING 16 GROUPS) FOR THE 16 HEAD EXPERIMENT.

In Table II, we look more closely into the case where
number of heads is equal to 16. Looking at this table, we
can see the percentage increase achieved for a certain number
of query groups in comparison to using 16 query groups,
like normal Multi-Head Attention does. We observe that using
1 query group, which is Multi-Query Attention, results in a
13.95% reduction in Energy usage and 15.31% in computation
performed.

Interestingly, our results show that for any particular number
of query groups, data points with more heads have less
computation or energy. This is because since we are fixing the
hidden dimension to a constant value, increasing the number of
heads implicitly decreases the head dimension, which results
in a overall decrease in the number of computations performed.
However, in practice this cannot be exploited to increase the
efficiently of inference past a certain point because the size
of the head dimension must be large enough to contain rich
semantic information, and reducing the head dimension past
a certain point removes that ability. Investigating this tradeoff
is outside the scope of this work.

We note that we do not report accuracy because of the com-
pute requirement to pretrain language models from scratch.
Instead, we note that the GQA paper has already studied ac-
curacy over an array of summarization and language modeling
tasks, finding that GQA and MQA do not suffer significant
accuracy losses over the more expressive MHA [1].

VI. FUTURE WORK

In the future, work could explore modifying the total hidden
dimension allocated to each head, and how the resulting
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Fig. 2. The effect of increasing the number of query groups (and therefore decreasing the number of keys and values) on the number of cycles, amount of
energy used, and number of computes.

changes in head dimension size impact training performance,
as discussed in Section V. On top of that, future studies could
address more recent advances like speculative decoding [3],
where multiple tokens are decoded simultaneously, or kernel-
level optimizations like FlashAttention [5]. Each of these
new techniques introduces unique, new challenges to profile,
with the tradeoff of additional heads introduced in speculative
decoding or the fused softmax used by FlashAttention yet to
be profiled extensively on energy-efficiency.

VII. CONCLUSION/DISCUSSION

In this work, we analyzed two interventions that can be used
to improve the inference efficiency of transformer models.
First, we investigated KV caching, an optimization designed to
reduce or eliminate the amount of recomputation in the models
attention mechanism. We showed that KV caching can lead
to clear reductions in energy usage, computations performed,
and cycles used. In particular, we showed that using a full
KV cache can reduce the energy consumption of inference by
16.36% in comparison to the no caching baseline.

Second, we investigated how the model architectural change
of using fewer query groups in attention can impact the
efficiency of inference. We showed that energy usage and
computes performed scales linearly with the number of query
groups, and that using Multi-Query Attention instead of Multi-
Head Attention results in an energy reduction of 13.95%.

Improving the optimization efficiency of transformers will
be essential for these models to realize the potential benefits
they promise to offer. Right now, inference on these state-
of-the-art models requires expensive hardware that uses huge
amounts of energy, prohibiting all but a few from running
these models. In the short term, inference optimizations can
help to increase the efficiency of these models, which would
help to both reduce the barrier to entry to using transformer
models and also reducing the environmental impact of these
models.

More work will be needed to make these methods more
useful and to find more novel methods that can be combined
to make inference in tranformers more efficient. However, we
are optimistic that there are many ways to make these models
more efficient and hope that these optimizations can be used
to effectively deploy AI products around the world.

VIII. SUBMISSION DETAILS

Rishab and Reece equally planned the direction of this
project. Rishab worked on the scripts to process GPT-J into
the YAML format taken by Timeloop, and he also created
the scripts to run Timeloop and Accelergy on the generated
experiments. He also contributed to writing the paper. Reece
led the writing of the paper and also wrote scripts to process
Timeloop/Accelergy outputs into the diagrams/tables in this
paper.

The submitted repository can be found at this GitHub repo.
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